MINUTES FROM MARCH 14, 1983

Santa Barbara Museum: Paul Scott, from the Santa Barbara Museum of Natural History invited all interested people to visit their facilities. The Museum is developing a local voucher collection and is willing to archive additional collections indefinitely. Currently the Museum's collection is most extensive for mollusks and insects (including intertidal insects). Anyone who is interested in either just stopping in to visit, or looking at the voucher collection may do so 3:00-5:00 Monday through Friday at:

Santa Barbara Museum of Natural History
2559 Puesta del Sol Road
Santa Barbara, California 93105

Provisional Nomenclature: PARTICIPATING MEMBERS - Bring in a list of provisional nomenclature currently used by you or your agency. As noted above, a special segment of April's meeting will be set aside to discuss the various terms. We will decide which course of action to take from here regarding provisional nomenclature.
Membership Dues: It's been a whole year now since SCAMIT was organized, and that means we are requesting dues for 1983-84. The dues will be $5.00 again for both Participating and Corresponding members. Such a bargain! Membership entitles you to receive the monthly Newsletter and to vote in all of SCAMIT elections. An application is enclosed.

Several requests have been made regarding a list of SCAMIT members who do free-lance work. If you are interested in being on a list of people who do such work, mark your membership form accordingly.

Fund Raiding for Video System: Several ideas were tossed around. The most popular were selling SCAMIT coffee mugs and straight-out donations. At this point coffee mugs are just being investigated. However, a straight-out donation has already been received. The first person to donate towards a video system was Gary Gillingham of Kinnetic Laboratories, Inc. (a sum of $20.00). Thank you very much Gary!

Anyone else that is interested in donating extra money can fill-out the enclosed form. Also T-shirts are still available for $8.00 plus .95¢ postage.

Treasury Report: As of March 25, 1983 the treasury balance was $261.87. The next anticipated expenditure will be for printing which will be about $50.00.

Elections: The mail-in votes will be tallied at the next meeting with votes at the meeting.

List of March 14, 1983 Topic Species

Volvulella panamica	Acteocina intermedia
Acteocina incula	Acteon traskii
Rictaxis punctocaelatus	Melanochlamys diomedea
Gasteropteron pacificum	Aglaja ocelligera
Sulcoretusa xystrum	Philine sp.
Cylichna diegensis	Cephalaspidea Genus A species A

Announcements: Two annual conferences are slated for the near future. They are:

Southern California Academy of Sciences
May 6 and 7, 1983 at California State University, Fullerton

California Water Pollution Control Association
May 3-7, 1983 at Hilton Riveria Hotel, Palm Springs
This conference will include an ocean monitoring session on Friday, May 6. The ocean monitoring session will feature several SCAMIT members as speakers, including a presentation on SCAMIT itself by John Shisko.

Provides color photographs of living animals of Chelidonura inermis (as Aglaja), Aglaja ocelligera, Bulla gouldiana, Cylichna attonsa, Acteocina cucitella (as Cylichnella), A. inculta (as Cylichnella), Diaphana californica, Gastropoteron pacificum, Haminoea vestula, H. virescens, Melanoclamys diomedea, Phlline bakeri, and RicCaxis punctocaelatus.

Contains descriptions and discussion of practically all species of cephalaspid reported between Alaska and the Gulf of California to its date of publication. Comments on variability of species and validity of names and previous reported occurrences make this an extremely valuable reference. Several family and generic keys are also included. The genus Sulcoretusa is established as a replacement name for Sulcularia O. D. 1921 (non Rafinesque 1831). The shells of many species are illustrated by poorly reproduced photographs.

Original description of many cephalaspid species, all except Volvulella catharia and Volvulella panamica repeated in Oldroyd. Descriptions are brief and unillustrated.

Not seen, may change status of Acteocina and Coleophysis species.

Not seen, may change status of Chelidonura, Aglaja, and Melanoclamys species.

Illustrations and brief descriptions of Volvulella cylindrica, V. californica, V. panamica, and V. catharia. Volvulella cooperi, V. callicera, and V. lowei all placed in synonymy of V. cylindrica. Volvulella tenuissima placed in synonymy of V. panamica. New subgenus, Paravolvulella, erected for V. panamica and V. texans n. sp.

Provides illustrations and brief descriptions of Acteon traskii, Microglyphis estuarinus, Bulla gouldiana, Atys casta, Haminoea vestula, H. virescens, Volvulella catharia, V. cylindrica, V. panamica, Chelidonura inermis (as Navanax), Acteocina inculta, and A. smithii.

Provides illustrated key allowing placement to genus for all cephalaspid, as well as other gastropods. If you have an animal you think may be a cephalaspid, start here.

Illustration and descriptions of northern species, some reputedly from the Northeast Pacific. Cylichna alba, Diaphana minuta, Phlline polaris, and Cylichna occulta are included. Keys to shells and to animals (where known) are presented.

Descriptions and figures (many anatomical details) of Bulla gouldiana, Haminoea virescens, Aglaja dromedea, and Chelidonura inermis (as Navanax). Chelidonura phocae n. sp. is described and illustrated.

Rictaxis is reestablished as a valid genus based on anatomical studies. Acteon traskii is confirmed as an Acteon, Rictaxis punctocaelatus confirmed as Rictaxis. Position of Rictaxis painei left open to question since no material with preserved animals was available for study.

Original description of Philine alba, with photographs of both animal and shell and drawings of internal anatomy. Comparison with P. bakeri very brief and unconvincing (based on size only).

Photographs and brief descriptions of the shells of Rictaxis punctocaelatus, Bulla gouldiana, Haminoea virescens, H. vesicula, Acteon culicellia, A. inculta, and Coleophysis harpa (as Acteocina).

Still the classic work on west coast mollusks. Reiterates (and provides translations) of the original descriptions of all species reported from the Northeastern Pacific prior to 1927. Photographs or drawings provided for Haminoea olgae (=H. vesicula), Acteon traski, Microglyphis brevicilis, Rictaxis punctocaelatus (as Acteon), Rictaxis painei (as Acteon), Acteona culicellia, A. madalenis, Coleophysis harpa (as Retusa), Cythina alba (as Cythina), Acteona exima, Cythina attonsa (as Cythina), Volvulella cylinndrica, Sulcoretusa xystum (as Retusa), and Diaphana californica.

Illustrations of the types and discussion of Rictaxis punctocaelatus, Atyx casta, Volvulella cylindrica, Acteona inculta, and Cythina attonsa. Acteona planata synonymized with A. inculta.

Melanochlamys raised to generic level and M. diomedea and M. nana indicated as belonging to the genus.

Key to most local cephalaspis species found in shallow water. Melanochlamys nana (as Agajja) referred to synonymy of M. diomedea.

List and comments upon west coast species, with emphasis on familial placement of genera.

Original description and illustration of Melanochlamys nana (as Agajja). Considered a synonym of M. diomedea by some (see Smith and Carlton 1974).

Extremely good general introduction to cephalaspids (called Bullomorpha by Thompson) including anatomy, reproductive biology, general ecology, evolutionary history, etc. Key provided for British genera. Description and illustration of Arctic and boreal species occasionally reported from adjacent areas north of Pt. Conception, i.e. Diaphana minuta.

Original unillustrated description of Acteocina intermedia, described as a subspecies of A. culicellia.

Original description of Philine californica. Photograph of shell provided, and brief description of living animal given (no illustration).
Preamble

In view of the diversity of marine invertebrates in the Southern California area and the many organizations studying the ecology of these organisms, the Southern California Association of Marine Invertebrate Taxonomists was organized by scientists who recognized the need to standardize systematic practices and taxonomic usage through a program of intercalibration. On April 21, 1982, the Association was founded and a Constitution Committee was formed to establish a working framework. This Constitution is the result of the Committee's activities.

Article 1: Name

The organization shall be the Southern California Association of Marine Invertebrate Taxonomists (SCAMIT).

Article 2: Purpose

The purpose of the Association shall be to develop standard procedures in systematic practices and taxonomic usage for marine invertebrates in the Southern California region. This will be accomplished primarily through an intercalibration program and the exchange of information among persons interested in marine invertebrate taxonomy. This will include specimen exchange and confirmation, literature exchange, the development of an intercalibrated reference collection housed at a designated institution, and guest lecturers.

Article 3: Membership

Section 1: Membership

Membership in the Association is open to individuals or institutions interested in the systematics and ecology of marine invertebrates. Membership can be obtained upon written application to the Secretary-Treasurer with an accompanying payment of dues.

Section 2: Type of Members

Charter, Participating, and Correspondent Members are recognized. Other classes of membership may be created by affirmative vote of two-thirds (2/3) of membership.

Section 3: Rights of Membership

All members whose dues have been paid for the current year shall be considered members in good standing and shall be entitled to receive notices of the Association’s activities, vote at meetings or by mail, and participate in any activities sponsored by the Association. Other privileges may be designated by a two-thirds (2/3) vote of the membership.

Article 4: Dues

Dues shall be five dollars ($5.00) annually. The amount and time period of dues shall be established and approved by a two-thirds (2/3) vote of the members voting on the issue. Dues can be changed by the same procedure.

Article 5: Officers

Section 1: Officers

The elected officers of the Association shall be the President, Vice-President, Secretary-Treasurer, and Committee Chairs.

Section 2: Term of Officers

All officers shall be elected by a simple majority vote of the members voting in the election. Officers may hold the same office for an unlimited number of terms. Newly elected officers shall assume the responsibilities of their office in April.

Section 3: Election of Officers

An ad-hoc nominating committee will entertain nominations for election from the membership and prepare a slate of candidates. Election shall be by means of a mail ballot sent February 1. Ballots shall be sent to members in good standing. Results of the election will be announced in April.
Article 6: Meetings

The Association shall normally meet on the second Monday of every month. The President may change meetings if conditions arise to warrant such changes. Actions of the officers may be amended at any meeting of the Association by a two-thirds (2/3) vote of the members present, assuming the Chair of the Agenda Committee has been contacted in time to insert the item in that month’s agenda.

Article 7: Limitations

The purpose of the Association are listed in Article 2 of the Constitution. Lobbying, or any activities specifically designed to influence legislation, support political groups, or advance popular, political, scientific, or religious causes are not among the objectives of the Association and neither the Association nor any official group within the Association shall engage in such activity.

Article 8: General Prohibitions

Notwithstanding any provision in the Constitution or Bylaws which might be susceptible to a contrary construction:

a) The Association shall be organized exclusively for scientific and educational purposes;

b) The Association shall not participate in, or intervene in (including the publishing or distributing of statements) political campaigns on behalf of any candidate for public office;

c) The Association shall not be organized or operated for profit;

d) The property of this Association is irrevocably dedicated to scientific and educational purposes and no part of the net income or assets of this Association shall ever inure to the benefit of any officer or member thereof or to the benefit of any private person. Upon the dissolution or winding up of the Association, its assets remaining after payment, or provision for payment, of all debts and liabilities of this corporation shall be distributed to a nonprofit fund, foundation, or corporation which is organized and operated exclusively for scientific and educational purposes and which has established its tax exempt status under Section 501 (c) (3) of the Internal Revenue Code.

Article 9: Amendments

This Constitution may be amended by a two-thirds (2/3) majority of those voting at any meeting of the Association or in a mail ballot. In either case, notice of the proposed action will be sent to each voting member of the Association by the Secretary-Treasurer at least sixty (60) days before the date of the vote.

Article 10: Bylaws

The Association may enact Bylaws for interpretation and implementation of the Constitution. Bylaws may be adopted, amended, or repealed by a two-thirds (2/3) majority of those voting at any meeting of the Association or in a mail ballot. In either case, notice of the proposed action shall be sent to each voting member of the Association by the Secretary-Treasurer at least sixty (60) days before the date of the vote.

Article 11: Division

At the discretion of the officers, the Association may establish ad-hoc committees to carry out activities under the overall sponsorship of the Association.

Proposed additional clause
Cephalaspidea of Southern California
(Species which have not been taken recently between Pt. Conception and
the Mexican Border, or whose range are questionable are marked with an
asterisk.)

Order Cephalaspidea
Suborder Acteonacea
Family Acteonidae
Acteon traski Stearns 1898
Rictaxis painei Dall 1903
Rictaxis punctocaelatus (Carpenter 1864)

Suborder Diaphanacea
Family Diaphanidae
Diaphana californica Dall 1919

Suborder Retusacea
Family Reteidae
Sulcoretusa xystrum (Dall 1919)
Family Volvulidae
Volvulella californica Dall 1919
Volvulella catharia Dall 1919
Volvulella cylindrica (Carpenter 1864)
Volvulella panamica Dall 1919

Suborder Ringiculacea
Family Ringiculidae
* Microglyphis breviculus Dall 1902
* Microglyphis estuarinus Dall 1906

Suborder Bullacea
Family Bullidae
Bulla gouldiana Pil sbry 1893

Suborder Atyacea
Family Atyidae
Subfamily Atyinae
* Atys casta Carpenter 1864
* Atys nonscripta (A. Adams 1850)
Subfamily Haminoeinae
Haminoea vesicula (Gould 1855)
Haminoea virescens (Sowerby 1833)

Order Cephalaspidea (Cont)
Suborder Philinnacea
Family Scaphandridae
Acteocina cucitella (Gould 1853)
* Acteocina eximia Baird 1863
Acteocina inculta (Gould 1855)
Acteocina intermedia Willett 1928
* Acteocina magdalenensis Dall 1919
* Acteocina smirna Dall 1919
Coleophysis harpa (Dall 1871)
* Cylichna alba (Brown 1827)
Cylichna attonsa (Carpenter 1864)
Cylichna diegensis (Dall 1919)
Cephalaspidea, und. sp. A (MBC)

Family Gastropteridae
Gastropteron pacificum Bergh 1894

Family Aglajidae
Aglaja ocelligera (Bergh 1894)
* Aglaja purpurea (Bergh 1893)
Chelidonura inermis (Cooper 1862)
Chelidonura phocae Marcus 1961
Melanochlamys diomedea (Bergh 1894)
Melanochlamys nana (Steinberg & Jones 1960)

Family Philinidae
Philine alba Mattox 1958
Philine bakeri Dall 1919
Philine californica Willett 1944
Woodbridgea polystrigma (Dall 1908)

Suborder Runcinacea
Family Runcinidae
Runcina sp. (Endocladina mats)
Runcinida sp. (coralline algal rubble)
SOUTHERN CALIFORNIA NINOE (LUMBRINERIDAE)

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>MAXIMUM # OF BRANCHIAL FILAMENTS</th>
<th>SETIGERS WITH BRANCHIAE</th>
<th>FREE PECTINATE BRANCHIAE</th>
<th>TYPE OF SUPERIOR FILAMENT</th>
<th>SETIGER W/ 1ST HOOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. chilensis Kinberg, 1865*</td>
<td>9-10</td>
<td>3rd thru 30th</td>
<td>No</td>
<td>Same as others</td>
<td>By 10th-12th</td>
</tr>
<tr>
<td>N. foliosa Fauchald, 1972</td>
<td>12-13</td>
<td>2nd thru 36th</td>
<td>Yes</td>
<td>Foliose</td>
<td>25th thru 45th</td>
</tr>
<tr>
<td>N. fusca Moore, 1911</td>
<td>1</td>
<td>1st thru 40th</td>
<td>---</td>
<td>---</td>
<td>1st</td>
</tr>
<tr>
<td>N. fuscoideas Fauchald, 1972*</td>
<td>1</td>
<td>2nd thru 30th</td>
<td>---</td>
<td>---</td>
<td>1st</td>
</tr>
<tr>
<td>N. gemma Moore, 1911</td>
<td>3(2-5)**</td>
<td>3rd thru 50th</td>
<td>No</td>
<td>Same as others</td>
<td>1st</td>
</tr>
<tr>
<td>N. longibranchia Fauchald, 1972*</td>
<td>6</td>
<td>2nd thru 18th</td>
<td>Yes</td>
<td>2x length of others</td>
<td>1st</td>
</tr>
<tr>
<td>sp. A Harris (see below)</td>
<td>5-11</td>
<td>2nd thru 43rd</td>
<td>Varies</td>
<td>Foliose</td>
<td>4th thru 14th</td>
</tr>
</tbody>
</table>

* *N. chilensis* has been reported from Southern California, but the specimens I've seen have been sp. A
+ *N. fuscoideas* & *N. longibranchia* have been collected from Oregon and western Mexico, both are likely to occur here: *N. longibranchia* has been tentatively identified locally.
** *N. gemma* was reported by Hartman (1968) as having 3 filaments (excluding the postsetal lobe, which is considered the dorsalmost branchial filament by some authors); Moore (1911) says 3, occasionally 4 filaments; Banse & Hobson (1974) state 1 to 5 filaments

NINOE SP. A

<table>
<thead>
<tr>
<th>SPECIMEN - #</th>
<th>MAXIMUM # FILAMENTS</th>
<th>SIZE (MM) (LENGTH X WIDTH)</th>
<th>TOTAL # SETIGERS**</th>
<th>SETIGERS W/ BRANCHIAE</th>
<th>PECTINATE FREE PORTION</th>
<th>SUPERIOR FILAMENT</th>
<th>SETIGER 1ST HOOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt. Dune - 13</td>
<td>5</td>
<td>4 x 0.8</td>
<td>30 (inc.)</td>
<td>3-18</td>
<td>No</td>
<td>1/3 longer</td>
<td>4</td>
</tr>
<tr>
<td>Dune - 14</td>
<td>5</td>
<td>5 x 0.6</td>
<td>40 (inc.)</td>
<td>3-19</td>
<td>No</td>
<td>1/3 longer</td>
<td>by 7</td>
</tr>
<tr>
<td>Santa Monica - 3</td>
<td>6</td>
<td>12 x 1.0</td>
<td>90 (com.)</td>
<td>3-27</td>
<td>No</td>
<td>Foliose</td>
<td>8</td>
</tr>
<tr>
<td>Aliso - 10</td>
<td>8</td>
<td>9 x 1.5</td>
<td>70 (inc.)</td>
<td>3-32</td>
<td>No</td>
<td>Slightly wider</td>
<td>11</td>
</tr>
<tr>
<td>Santa Monica - 2</td>
<td>8</td>
<td>13 x 1.1</td>
<td>100 (com.)</td>
<td>2-30</td>
<td>No</td>
<td>Foliose</td>
<td>9</td>
</tr>
<tr>
<td>Santa Monica - 8</td>
<td>8</td>
<td>14 x 1.1</td>
<td>120 (com.)</td>
<td>2-32</td>
<td>Yes</td>
<td>Foliose</td>
<td>?</td>
</tr>
<tr>
<td>Santa Monica - 5</td>
<td>10</td>
<td>11 x 1.1</td>
<td>70 (inc.)</td>
<td>2-34</td>
<td>No</td>
<td>Foliose</td>
<td>6</td>
</tr>
<tr>
<td>Orcosan - 4</td>
<td>10</td>
<td>16 x 1.1</td>
<td>110 (inc.)</td>
<td>2-40</td>
<td>No</td>
<td>Foliose</td>
<td>12</td>
</tr>
<tr>
<td>Santa Monica - 7</td>
<td>11</td>
<td>7 x 1.5</td>
<td>30 (inc.)</td>
<td>2-33+</td>
<td>Yes</td>
<td>Foliose</td>
<td>?</td>
</tr>
<tr>
<td>Aliso - 9</td>
<td>11</td>
<td>19 x 1.6</td>
<td>120 (com.)</td>
<td>3-40</td>
<td>Yes</td>
<td>Foliose</td>
<td>?</td>
</tr>
<tr>
<td>Aliso - 11</td>
<td>11</td>
<td>22 x 1.8</td>
<td>120 (com.)</td>
<td>3-41</td>
<td>No</td>
<td>Foliose</td>
<td>11</td>
</tr>
<tr>
<td>Santa Monica - 6</td>
<td>11</td>
<td>23 x 1.8</td>
<td>130 (com.)</td>
<td>2-43</td>
<td>Yes</td>
<td>Foliose</td>
<td>6</td>
</tr>
<tr>
<td>Aliso - 12</td>
<td>11</td>
<td>23 x 1.8</td>
<td>140 (com.)</td>
<td>3-42</td>
<td>No</td>
<td>Foliose</td>
<td>9</td>
</tr>
<tr>
<td>Santa Monica - 16-22 (6 from 1 station)</td>
<td>5 to 11</td>
<td>5 to 21 by 0.8 to 1.8</td>
<td>46 to 120 (inc. & com.)</td>
<td>3-20 to 2-40</td>
<td>No and Yes</td>
<td>Foliose/ Foliose</td>
<td>5 to 1/3 longer 11</td>
</tr>
</tbody>
</table>

The present specimens come from between Oceanside and Point Dume, from 60 meters or shallower. Characters used for identification show much greater variation than in previously described species. This variation appears to be size-related. Whether Sp. A is a discrete species or a complex of several known or undescribed species will depend on its comparative jaw structure and setal composition.

*Includes postsetal lobe (also called the dorsal cirrus or dorsalmost branchial filament)
**Approximately.
VOUCHER SHEET

Marphysa stylobranchiata (Moore, 1909)
Eunicidae

Date Examined and Code: February 14, 1983, AHF 12

Other Literature: Moore, J.P. 1909 p. 249
Fauchald, K. 1970 p. 55
Banse, K. and K.D. Hobson. 1974 p. 85

Important Characters: Branchia all simple, beginning on setigers 16-20 and ending within 12-20 segments of the pygidium; acicula black at base with pale tips, number 3-5 in anterior segments; composite falcigers with bifid tip, simple limbate setae; no peristomial cirri.

Variability:

Occasionally some branchiae may be branched.

Comments: Hartman (1968) lists the depth range as intertidal to slope depths, in rocky habitats.
Eunice vittata (delle Chiaje, 1828)

Eunicidae

Date Examined and Code: February 14, 1986, OC 16

Fauchald, K. 1970 p. 48

Other Literature: Hartman, O. 1944 p. 118

Important Characters: Branchia present from setigers 3, absent from posterior two-thirds of body; single branchial filaments in first one or two branchiae; maximum number branchial filaments 10-12; yellow tridentate subacicular hooks present from setiger 16-24, bidentate composite hooks with pointed hood; occipital tentacles are articulated, each article long and cylindrical.

Related Species and Character Differences: Eunice americana - occipital tentacles smooth; two to three branchial filaments in the first branchia. Eunice cedroensis - composite hooded hooks have reduced proximal teeth and slightly curved distal teeth (fig. 1) while E. vittata has composite hooded hooks with well developed proximal teeth and strongly curved distal teeth (fig. 2).

Comments: Fauchald (1970) lists the depth range between 10 and 50 fathoms for western Mexico. Hartman (1968) list the depth range between intertidal and 55-110 fathoms.

Fig. 1 (Fauchald, 1970 p. 273) Fig. 2 (Fauchald, 1970 p. 275)
VOUCHER SHEET

Onuphis iridescens (Johnson, 1901)

Onuphidae

Date Examined and Code: February 14, 1983, LACO 7

 Fuachald, K. 1982 p. 49

Other Literature: Hobson, K.D. 1971. p. 533

Important Characters: The first 3-5 setigers have tridentate pseudo compound hooks; ventral cirri cirriform through setigers 5-7; simple branchia present from setiger 1; subacicular hooks present from setiger 12-15 and usually occur 2 to a fascicle; outer ceratophore with 15 annulations; inner ceratophore with 18 annulations.

Related Species and Character Differences: Onuphis elegans - first four setigers with bidentate and tridentate pseudo compound hooks (Hobson, 1971 notes that a few quadridentate hooks are present); subacicular hooks present from setiger 10; ceratophores with 10-11 annulations.

Variability: Juveniles have cirriform ventral cirri through setigers 2-4 and subacicular hooks start on setiger 8-10.

Common Synonyms: Nothria iridescens

Comments: Onuphis iridescens occurs in deeper water than does Onuphis elegans. O. iridescens - intertidal to 2400 M - O. elegans - intertidal to 23 M.
VOUCHER SHEET

Hyalinoecia juvenalis (Moore, 1911)

Onuphidae

Date Examined and Code: February 14, 1983

Other Literature: Fauchald, K. 1972

Important Characters: Peristomial cirri absent; branchia present from setiger 18; tube quill-like, translucent, less than 100 mm long, less than 2 mm wide; shallow depths.

Related Species and Character Differences: Hyalinoecia stricta - branchia present from about setiger 26-30; tubes up to 300 mm long; abyssal depths.

Aids to Identification: Tube quill-like.

Goniada brunnea (Treadwell, 1906)
Goniadidae

Date Examined and Code: February 14, 1983, OC 14
Other Literature: Hartman, O. 1950 p. 17
Banse, K. and K.D. Hobson. 1974 p. 81

Important Characters: Notopodia with slender hairlike setae; posterior and median neuropodia with 2 presetal lobes; proboscideal organs broadly flaring (fig. 1); notopodium with small postsetal lobe.

Related Species and Character Differences: Goniada maculata - proboscideal organs are slightly flaring (fig. 2) and heart shaped; notopodium without postsetal lobe.

Comments: Occurs in low intertidal depths to over 1200 meters between Alaska and southern California.

Fig. 1 (Hartman, 1950: p. 145) Fig. 2 (Hartman, 1950: p. 145)
VOUCHER SHEET

Goniada littorea (Hartman, 1950)

Goniadidae

Date Examined and Code: February 14, 1983, LACO 8

 Hartman; O. 1950 p. 23

Important Characters: Notopodia with slender hairlike setae; posterior and median neuropodia with single, longer presetal lobe; notopodia with a prolonged presetal lobe; proboscideal organs have a large beak (fig. 1); pigmented dorsally and ventrally with 3 longitudinal rows of dark spots; chevrons number 16-18 on a side.

Comments: Occurs in shallow waters between intertidal depths and 45 meters.

Fig. 1 (Hartman, 1950: p. 149)
Goniada maculata (Oersted)

Goniadidae

Date Examined and Code: February 14, 1983, OC 12

Keys Used: Hartman, O. 1950 p. 20
Banse, K. and K.D. Hobson. 1974 p. 81

Important Characters: Notopodia with slender hairlike setae; posterior median neuropodia with 2 presetal lobes; proboscideal organs slightly flaring (fig. 1), heart shaped; notopodium without postsetal lobe; chevrons number 7-11 on a side.

Related Species and Character Differences: Goniada brunnea — proboscideal organs are broadly flaring (fig. 2); notopodium has a small postsetal lobe; chevrons number 7-9 on a side.

Fig. 1 (Hartman, 1950: p. 145) Fig. 2 (Hartman, 1950: p. 145)
Glycera branchiopoda (Moore, 1911)

Glyceridae

Date Examined and Code: February 14, 1983, AHF 10

Other Literature: Fauchald, K. 1972 p. 101

Important Characters: Proboscideal organs without ridges; probosideal organs include three types: large foliose ones with subterminal pores, smaller similar ones and long slender conical ones with terminal pores; in posterior setigers both parapodial lobes are greatly prolonged; parapodia with single postsetal lobe.

Related Species and Character Differences: Glycera capitata - proboscideal organs include only two types: large foliose ones and tall conical ones; posterior parapodial lobes distinctly shorter than parapodial bases.

Comments: Occurs in deep slope and basin depths, in mud.
VOUCHER SHEET

Glycinde armigera (Moore, 1911)
Goniadidae

Date Examined and Code: February 14, 1983

Other Literature: Banse, K. and K.D. Hobson. 1974 p. 80
Hartman, O. 1950 p. 49

Important Characters: Dorsal cirrus not incised near tip; parapodia uniramous through 30 segments, transitional through 30 or more segments, biramous in all posterior segments; notopodial presetal lobes cordate (fig. 1); eversible proboscis covered with yellow, chitinized spines (fig. 2).

Related Species and Character Differences: Glycinde polygnatha - dorsal cirrus incised near tip (fig. 3); parapodia biramous in median setigers.

Comments: Occurs in low intertidal zones to 550 meters.

Fig. 1 (Hartman, 1968: p. 643). Fig. 2 (Hartmen, 1968: p. 643). Fig. 3 (Hartman, 1968: p. 645).